LIQUID-CRYSTALLINE BEHAVIOUR OF 2,5-DISUBSTITUTED 1,3-DIOXANES SUBJECT TO THE FLEXIBILITY OF TERMINAL CHAINS

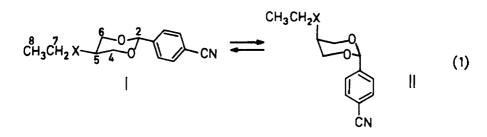
B. KLEINPETER⁺, H. KÖHLER, A. LUNOW, C. TSCHIERSKE and H. ZASCHKE

Sektion Chemie, Martin-Luther-Universität Halle-Wittenberg Weinbergweg 16, DDR-4050 Halle (Saale), G D R

(Received in Germany 4 November 1987)

Abstract: The liquid-crystalline behaviour of 2,5-disubstituted 1,3-dioxanes with the 5-substituents $-CH_2CH_2CH_3$, $-OCH_2CH_3$, $-SCH_2CH_3$ has been subjected to the intramolecular flexibility of these substituents, which is increasing in the given series to distort the rod-like arrangement of these species in the mesophase.

Trans-2,5-disubstituted 1,3-dioxanes usually emphasize wide ranges of mesophases¹. Especially if these compounds have alkoxy and alkylthic substituents in position 5, then, due to the strongly preferred diequatorial arrangement^{2,3}, very useful mesophase behaviour is expected.


The studied 1,3-dioxanes have been prepared from the adequately 2-substituted propane-1,3-diols by acidic catalyzed acetalization with the corresponding aldehydes¹. The 2-alkoxy-propane-1,3-diols, necessary therefore, have been obtained from 2-phenyl-5-hydroxy-1,3-dioxane and alkylbromides by Williamson's ether synthesis and final deacetalization⁴; the corresponding 2-alkylthio-propane-1,3-diols, on the other hand, are readily available from the 2-alkylthiomalonic acid diethylesters by reduction with LiAlH_h³.

The compounds, together with the temperatures characterizing their liquidcrystalline behaviour, are collected in Table 1.

When comparing now the 5-alkyl substituted derivatives with the adequate 5-OAlk, and 5-SAlk substituted 1,3-dioxanes, dramatical clearing temperature^{&)} depressions (between 20 and 90 degrees) have been obtained, being strongest in the 5-SAlk derivatives. To find a reason therefore is the major objective of the following investigations.

First, in having a look on possible conformational sources (owing to the partizipation of the a,a-conformer II beside the e,e-invertomer I in (1)) the chemical equilibration⁵ of three model compounds <u>1</u> $(X=CH_2)$, <u>2</u> (X=O), and <u>3</u> (X=S) has been studied; simple low temperature NMR studies of the single trans-isomer failed due

(a) clearing temperature - temperature for the transition from the liquid-crystalline to the isotropic liquid state.

to the very preferred e,e-conformer I. The free conformational energies, ΔG° , which have been obtained after chemical equilibration in ether for six days are as follows:

5-substituent:	-CH2CH2CH3	-OCH2CH3	-sch ₂ ch ₃ ,
$-\Delta G^{\circ}$ (kJ/mol):	4.23	5.96	7.64

and display increasing preference of the diequatorial conformer I in this series. If the clearing temperature is a function of ΔG° (e.g. the rod-like e,e-conformer favours the mesophase formation) the adequately increasing clearing temperatures would be expected. The experimental results of the Table 1, however, show divergent liquid-crystalline behaviour.

Second, to investigate the intramolecular flexibility of the 5-substituents, which obviously is also of influence on the distortionless rod-like arrangement in the mesophase, we measured the spin-lattice relaxation times T_1 of the carbon atoms in compounds <u>1-3</u> - given in Table 2. Additionally, after determining the NOB's and estimating the contributions of the dipole-dipole relaxation mechanism to the obtained T_1 's (between 65 % and 90 %) herefrom, the effective molecular correlation times T_C have been calculated and included into Table 2. When comparing the corresponding relaxation parameters of the carbon atoms along the 5-substituents, the results are as follows:

5-substituent:	-сн ₂ сн ₂ сн ₃	-och2cH3	-sch2ch3
T ₁ (s) :	2.44 2.92	3.23 3.24	5.31 5.11
$\mathbf{T}_{0}(10^{-12} \text{ s}^{-1}):$	5.67 5.17	2.41 2.44	1.85 0.87

In the series $-CH_2CH_2CH_3 < -OCH_2CH_3 < -SCH_2CH_3$ the intramolecular flexibility of the 5-substituent is increasing. Even if this is controverse to the bond lengths in the case of X=0, it is in line with the obtained differences in the clearing temperatures of the adequately 2,5-disubstituted 1,3-dioxanes. In terms of these experimental results, the unexpected clearing temperature depressions of 2,5-disubstituted 1,3-dioxanes having OAlk and SAlk, respectively, as a 5-substituent result from the higher intramolecular flexibility of these substituents to distort the rod-like arrangement of the present spezies in the mesophase and to decrease the clearing temperature consequently.

Studies are on the way to make the obtained conclusions more general.

Туре	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	C	s _B	N	I
		CH2	.20	.182	-	•
C ₃ H ₇ -•CH ₂ X-•CH ₂ X-•C ₄ H ₉		0	.51	.142		•
		S	.2)	.135		•
		CH2	.112	-	.197	
C ₅ H ₁₁ X-		0	.114	-	.176	•
-0 -3		S	.89	-	.142	
		снг	.78	-	.183	•
С ₃ H ₇ -••СH ₂ X-•С		0	.119	-	.149	•
		S	.74		.94	•
_	1	CH ²	.53	-	(.39)	•
C ₂ H ₅ X-	2	ວ້	.140	-	-	•
	2	S	.105	-		-

		Liquid-crystalline		•		1)
Table	1:	Liquid-crystalline	behaviour	or	2,5-disubstituted	1,3-dioxanes

¹⁾C means crystalline solid; S_A , and S_B are smectic liquid-crystalline phases; N means a nematic phase; I describes the isotropic liquid.

2) The transition from the solid to the smectic S_B mesophase could not be determined by polarized light microscopy.

Table 2: Spin-lattice relaxation times, T_1 , NOB enhancement factors, η_C , partial dipole/dipole relaxation contribution, % DD, and the corresponding dipole/dipole relaxation times, T_1 (DD); molecular correlation times, T_C , obtained from % DD

compound	carbon atom	T ₁ (s) at 50 MHz	at 20 MHz	% _{DD} 1)	η _c 1)	T ₁ (DD)	$(s)^{1} \tau_{c}^{(10^{-12} s^{-1})}$
<u>1</u>	2	3.65	4.67	45.62	0.907	10.24	2.74
	4.6	1.90	2.12	45.32	0.901	4.68	6.00
	5	2.40	3.68	40.39	0.803	9.11	3.08
	7	2.44	3.32	67.00	1.332	4.97	5.67
	8	2.92	4.25	78.22	1.556	5.43	5.17
2	2	3.51	3.71	78.22	1.555	4.54	6.19
	4.6	1.87	2.25	87.79	1.944	1.93	7.27
	5	3.15	3.21	72.94	1.448	4.15	6.77
	7	3.23	5.05	76.56	1.522	5.84	2.41
	8	3.24	4.22	88.13	1.752	3.83	2.44
2	2	3.74	3.94	58.25	1.158	6.07	4.62
	4.6	1.78	2.35	82.70	1.644	2.82	4.92
	5	3.54	3.71	100	2.079	3.71	7.57
	7	5.31	4.94	65.14	1.295	5.83	1.85
	8	5.11	7.36	68.61	1.364	10.73	0.87

¹⁾obtained at 20 MHz using a Bruker AC-80 NMR spectrometer.

EXPERIMENTAL

The ¹H NMR spectra have been recorded at 200.13 MHz and the ¹³C NMR spectra at 50.67 MHz using a Bruker WP-200 NMR spectrometer. Temperatures have been calibrated to \pm 1 ^oC using the involved temperature unit.

The trans-5-substituted 2-p-cyano-phenyl-1,3-dioxanes have been chemically equilibrated as follows: A drop BF₃ as a catalyst was added to 16 mg substance in 10 ml ether and the mixture hold constant at 25 °C for six days in a sealed tube. Then the solvent has been removed, the reaction mixture worked up and ¹H NMR spectra recorded. The well separated absorptions of the tertiary protons in position 2 of the resulting cis/trans isomers have been integrated very carefully and finally used via $\Delta G^{\circ} = -RT \cdot \ln K$ to obtain the free conformational energies. The T₁ values (samples have been degassed several times under vacuum and the tubes sealed) have been obtained in inversion-recovery mode using the Bruker soft ware and the NOE's estimated quantitatively from the ¹³C NMR spectra taken in inversegated mode. Herefrom the effective molecular correlation times T_C are available in usual way⁶.

The phase transition temperatures were determined by crossed polarized light microscopy.

REFERENCES

- 1 H. M Vorbrodt, S. Deresch, H. Kresse, A. Wiegeleben, D. Demus and H. Zaschke, J. prakt. Chem. 323, 902 (1981).
- 2 B. L. Bliel, Angew. Chem. 84, 779 (1972).
- 3 S. A. Evans, F. Alcudia, E. L. Eliel, M. K. Kaloustian, N. Dennis and S. Mager, J. Amer. Chem. Soc. 98, 956 (1976).
- 4 J. R. Surless, J. Med. Chem. <u>28</u>, 73 (1985).
- 5 B. L. Bliel and Sr. M. C. Knoeber, J. Amer. Chem. Soc. <u>90</u>, 3444 (1968).
- 6 F. W. Wehrli and J. Wirthlin, "Interpretation of Carbon-13 NMR Spectra", Heyden & Sons, London 1976.